Image analysis and Pattern Recognition

Lecture 1 : image pre-processing
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The Pattern Recognition System 2

* Electricity, electronics,

metrology

Segmentation * Signal Process?ng

* Image Processing

Geometry, topology
|
Classification ’ Sta;'\IStICS

@ * Robotics, ...
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Image segmentation 3

e Chapter 1 : Image Segmentation

— Digital images, properties & consequences
of those properties

— Pre-processing >Lecture 1
= Histogram Equalization

= Denoising and image restoration
— Segmentation:

= Contour-based approach

= Region-based approach Lecture 2

» Mathematical Morphology ~

= (Hough Transform)

— Some examples ~

J \_
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Digital images & properties

e Animage is a function of (at
least) 2 spatial variables :

—

FR" SR x y= F(x)

— 2D Images: m=2, 1.e. )&:(x,y)
— Monochromatic images: n=1
— Digital images: discrete domain:

Jf:N" >R

= The points are pixels (voxels in
3D)

e
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Digital images & properties 5

e Monochromatic images: 1 scalar / pixel
— Often displayed as grey levels
— Choice of other color lookup tables (CLUT) : « false colors »

Valeur R G B Valeur R G B
0] 0/255 0/255 0/255 0 0 0 0.5
1 1/255 1/255 1/255 1 0 0 052
2 2/255 2/255 2/255
3 3/255 3/255 3/255 150 1 0.34 0
255 255/255 | 255/255 | 255/255 255 0.5 0 0

e
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Digital images & properties

e Multi-spectral images:
1 vector/pixel

Example : color images =

= Each pixel has three color
components, in a given color
space

s

Luminance is a good
component to identify objects

e

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

= Example : display on a screen:
RGB

= Example : TV diffusion: YUV
ou YIU (Y=luminance)
YY) (0299 0.587 0.114\(R

0.596 -0.275 -0321 G
0212 -0.523 0331 )\ B s
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2D Fourier Transform

o Letfixy) be a2D image

— Its Fourier Transform is

o0 o0

F(fof)= | [ £y e dxdy

_w_

— It is separable :
F(foy)= [ fuy)e ™ dx

F(fuf)=[F(foy)e " dy
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Sampling and reconstruction 8

e Sampling a continuous function (image) f(x,y) means
taking samples at every Ax and Ay

e f.«and f,, are the vertical and horizontal sampling
frequencies, respectively

e Mathematically, this means multiplying the analog
image f(x,y) by a grid of Dirac impulses
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Sampling and reconstruction 9

e Thus, the spectrum of the sampled image can
be obtained by a convolution of the spectrum
of the analog image with the FT of the grid of
Dirac impulses:
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Image reconstruction 10

e From the spectrum of the
sampled image, on can try
to reconstruct the original
image by low pass filtering:

— Multiply the spectrum by a
rectangle function in 2D

— Convolve the sampled
image by a signal of type
sin(x)/x in 2D

Ko, o, sin(w,x) Sin(a)nyy )

R(x,y)=
(x.7) 7’ WX ®,, Y

X
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Scale change 11

e Practical implication: scale change (« zoom »)
— Up-sampling : interpolation by R(x,y)

— Down-sampling: low-pass filtering + interpolation,
otherwise aliasing

| ]
3 (!

-2 - - o 4 3
2%xs “xs Yxs Wys S Ws

Aliasin - -
= Originale Image Aliasing
/-\ Signal Processing Laboratory (LTS5) E P F L
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland



Geometrical operations 12

Following the same considerations, it is possible to
perform geometrical operations on images, as a pre-
processing step:

— translation : thanks to interpolation, it is possible to reconstruct
an image translated by a nopr-tinteger number of pixels:

— Inverse translation + interpolation

e
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Geometrical operations

13

e Other operations of the same type:
— rotation : idem

x) (cos@ —sinb | u
y “|sin®  cos@ v
u) (cos@ sin6 | x
v) |—sin@ cosd y

= rotation inverse + interpolation

— And similarly for all the possible geometrical
transformations
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Geometrical operations 14

e More generally:
— Linear transformations :

vi|=|b b, by |y
A1) (0 0 1AT)

Translation:a, =—¢ ,a =1,a,=0,b,=-t,,b,=0,b, =1
Rotation:a, =0,a, =cos8,a, =sind,b, =0,b, =—sinb, b, =cosb
Zoom:a, =0,a,=1/s,a,=0,b,=0,b,=0,b, =1/s
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Geometrical operations 15

e Other geometrical
transformations (non-linear): -

— Polynomial deformation _ B
= Ex: order 2 — — E

— 2 2
u=a,+ax+a,y+a,x*+a,xy+ay

v=>b,+bx+b,y+bx*+b,xy+b;y> - - - Ej

l%i
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Geometrical operations 16

e Example of
polynomial
transformation

(a) Source (b) Destination

(c¢) Warped image
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Geometrical operations

e Examples in medical
Imaging
— compensation of the

difference in position
between two patients

» rotation-translation

— Registration in
functional MR
= rotation-translation

— Registration between
different patients
= Complex non-rigid
registration
(polynomial)
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Histogram Equalization 18
e | et us observe the histogram of the CT
image
> r : -ﬁ——]
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Histogram Equalization 19

e (Goal: create an image with a uniform
histogram, by a transformation ¢=7(p)

NZ
Z G(q,) = ZH(pi) et G(g,) =
i i dr — 4o
q N2 NZ p
o o0 ds = (9-4,) = | H(s)ds
M a0 9k — 4o 9 — 4o 2o
. o
: . q=T(p)=LZ [H(s)ds+q,
Po
_ p
g=T(p)=L—10 > H())+q,
N I=Po
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Histogram Equalization 20

e Example
o

u
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Denoising 21

e Vast topic!

e Source of noise in images:

— All the interferences on the measurements
(electrical, mechanical, ...)

— Signal quantification
— efc.

e Characteristics of the noise
— Random signal

— Often, in real situations, noise can be described as
white, additive and Gaussian

— But it may have sometimes other statistics
(Reyleigh)
— additive : y(t) = x(t)+n(t)
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Denoising 22

e One can define the importance of the noise by the
signal to noise ratio:

SNR = IOlog% [dB]

N
e |f one can acquire several realization of the noisy
signal, one can try to denoise it by exploiting the
statistical properties (e.g. zero mean) of the noise.

— Example : for an additive noise with zero mean, one can
calculate the mean of the observations, which will reduce the
noise:

If y(t) = x(t) + n(t)
Then E(y(t)) = E(x(1)+n(t)) = E(x(t)) + E(n(t)) = E(x(1))
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Denoising: linear filtering 23

e |[f one has access to only one image: we have to use
more general aspects:

— Noise has a large frequency spectrum, containing also high
frequencies (more than the images)

— A low-pass filtering should reduce the noise
— But there is a risk to alter the image as well!

e [ ow-pass filtering:
— 2D convolution: G(i, j) = ZZF(m’n)H(m —i,n—J)

— Some simple low-pass filters:

111 111 121
H=1111 H=1]1 2 1 H=1[2 4 2
9 10 16

111 111 12 1]
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Denoising: linear filtering 24

e Example :

Original With Filtered Filtered
additive (3x3 filter) (5x5 filter)
white
Gaussian
noise

e

Signal Processing Laboratory (LTS5) E P F L
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland



Denoising: homomorphic filtering 25

e Sometimes the noise can be multiplicative
— Noise depends on the intensity of the signal
— example : nuclear medicine

e Then the model of the observed image is:
— Initial image f(i,j)) multiplied by the noise n(i)

1o &, J) = 1, jinG, j)

— By taking the logarithm, we can come back to an additive
model, that we can filter

log(f, (i, /) = log(f,(i, /) +log(n(i, j))
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Denoising: non-linear filtering 26

e Linear filtering works quite well for additive
(Gaussian noise

— Even if it degrades the contours

e \When the noise is of type “impulses”, we would
need a very strong filter to suppress it, and the
image would be very degraded

e Non-linear techniques often offer a good
compromise between filtering power and
respect of the image details
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Denoising : « Outliers » 27

e Compare the pixel
value with the mean

of its neighbors

— If the difference is greater o 0,]0,/0,
than a certain threshold, | Og| X |04
the pixel is considered as
noisy, and replaced by the
mean of the neighbors |

— Canbe seenas a LSNP

conditional convolution by

1 1

H:l O 1
8

1 1

—
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Denoising : « Outliers »

e Example

Noisy image

Denoised image

« salt & pepper »

e
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Denoising: median filter 29

e Let us consider the neighbors
of a pixel, on a neighborhood
of size nxn

e Let us sort the values of those
pixels in ascending order

e |etus setthe median value of
this list (not the mean) as the
value of the current pixel

— The median is the value of
the middle element of the list

e Advantages:

— Suppresses the small
variations

— Keeps the contours
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Denoising: median filter 30

Noisy image

« salt & pepper » | Denoised image

« salt & pepper »

Noisy image
Gaussian noise

Denoised image
Gaussian noise
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Contour enhancement 31

e General Principle:

— Enhance the high frequencies
= Filtering by a high pass filter, added to the original image

e Some examples of high pass filters:

(0 -1 0] -1 -1 -1
H=-1 5 —1| Hy=[-1 9 -1 )
0 -1 0 B 5
1 -2 1]
H3 =|-2 5 -2 Frequency -1 -1 Frequency
1 -2 1]
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Contour enhancement

e Example : MRI

Original Enhanced : filter H,

e
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Contour enhancement 33

e Example : X ray

Original Enhanced : filter H,
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Contour enhancement 34

e Example : DSA

Original Enhanced : filter H,
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Contour enhancement 35

e Contour Enhancement in the Fourier domain
— Filtering by a high pass filter
— Keep the original image and add the high pass component

— Warning: do not use too strict filters, because of the ringing
effect

— Prefer a smooth filter like Butterworth
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Image Restoration 36

e Restoration : invert non-wanted effects

e Typical application: deconvolution

— Let us consider the ideal image f; that has been
degraded by an undesired (low pass) filtering effect

— Let f, be the observed image
— Moreover, there is an additive noise n,

Jo (X, ¥) = f:(x, ¥) **hy, (x, y) + n(x, y)

e (Goal : try to restore the initial image, using a model for
the original image and for the noise
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Image restoration: inverse filtering 37

e Inverse filtering: let us find a filter hg that will best
restore the image f;

e The restored image will thus be

N

fi(x, )= 1,6, ¥) **he (x, »)

e By substitution in the previous equation, we get

£,06, ) = L1306, ») **hy, (x, )+ n(x, )]* ¥, (x, )
e ByFT:

Fl(o,,0,)=[F(o,0)H,)(0,,0)+N@®,0)H, o)
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Image restoration: inverse filtering 38

e Thus,, the solution consists in taking a filter hg with a
frequency response inverse of that of hy :

1
HD(a)xaa)y)
e The spectrum of the restored image is thus
N(wx9wy)
HD(a)xﬂa)y)

e And by inverse FT, the restored image will be

Hy(o,,0,)=

F(o,,0,)=F(0,0,)+

ej(a)xx+wyy)dXdy

ﬁ(x>Y)=ﬁ(x,y)+ 1 ]gj N, o,)

dr? -7 Hy(o,,0,)

—0o0
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Image restoration: inverse filtering 39

e \Without noise, the
restoration is perfect

e \With noise, the error |
can be important: | "

— Often hp will be a low-
pass filter (blur, ...)  [Hs(@.,0)

— Noise will thus be | / Wy

amplified |
H (,.0) _//

F(o,.0)
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Image restoration: inverse filtering

e Example

’ ‘ e
)

Original Blured image
(filtered)
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Image restoration: inverse filtering

e Example (cont.)

41

Restoration of the blured image Restoration of the noisy blured image

e
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Image restoration: Wiener filtering 42

e The previous problem comes from the fact that the filter
ignores the presence of noise in the

— solution : Wiener filtering, that considers both a model of the
image and of the noise

e Wiener filtering: hypotheses :

— Images are 2D random variables, with zero mean (can be
obtained by subtracting the mean to the images)

e Goal: find a filter hg that will minimize the quadratic
error

5=E{[ﬁ(x»)’)_ﬁ-(x»y)]2}
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Image restoration: Wiener filtering 43

e (Calculating the 1st derivative, the error is minimal

when n
B/ ) - F )| £, =0

N

e By replacing f by its value, we get
E{ £, )£, 00 = [ [E{f,G )L (0} hyp(x =i,y = jdidj

e The expectations of this products are the
intercorrelation and the autocorrelation of the variables:

K, (x=x.y-y)= Iijo(i—x',j—y') h,(x—i,y— j)didj
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Image restoration: Wiener filtering 44

K, (x=x'y=y)= [ [K, (i-x"j—=p") hy(x—i,y— j)did]

e By FT, we obtain

Pf,-fo (a)x ’ a)y)

Hy(o,,0,)=

Pfo (wx’ wy)

P, (o)) 1s the power interspectrum

P (o, ®,) 18 the power spectrum of f,
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Image restoration: Wiener filtering 45

e \When the noise is additive, we can write, by the Wiener-Kintchine
theorems :

2
P (0,0, = ‘HD(a)x,a)y)‘ P, (0, 0,)+F(0,0,)
and
P, (0,0,)=H,(0,0)P (0,0,

e And we finally obtain the Wiener filter, with frequency response:

Hy(o,,0,)=
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Image restoration: Wiener filtering 46

e Conclusions:

_ The Wiener filteris a  [P(@-0) \

adaptive band-pass i,
filter Py (@,,0))

— |t behaves like the
inverse filter at low

frequencies and like a H,(0,,0)

low-pass filter for high =~ \

frequencies W,
H (,,0) A
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Image restoration: Wiener filtering 47

e Examples :

Motion blur Restored Image

)
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Image restoration: Wiener filtering 48

e Examples (cont.):

Out-of-focus blur Restored image

)
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Image restoration: Wiener filtering

How to estimate hp and the -
power spectrum of the noise?

— hpis the impulse response of the
system. Thus if we find in the
image a place that should contain
a punctual object, one can deduce
hp

— Similarly, a clear edge allows to

evaluate the index response,
integral of the impulse response

For the power spectrum of the
noise:

— A uniform region in the image
show the noise. The FT of its
autorcorrelation gives an
estimation of the power spectrum
of the noise

@
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