

Image analysis and Pattern Recognition

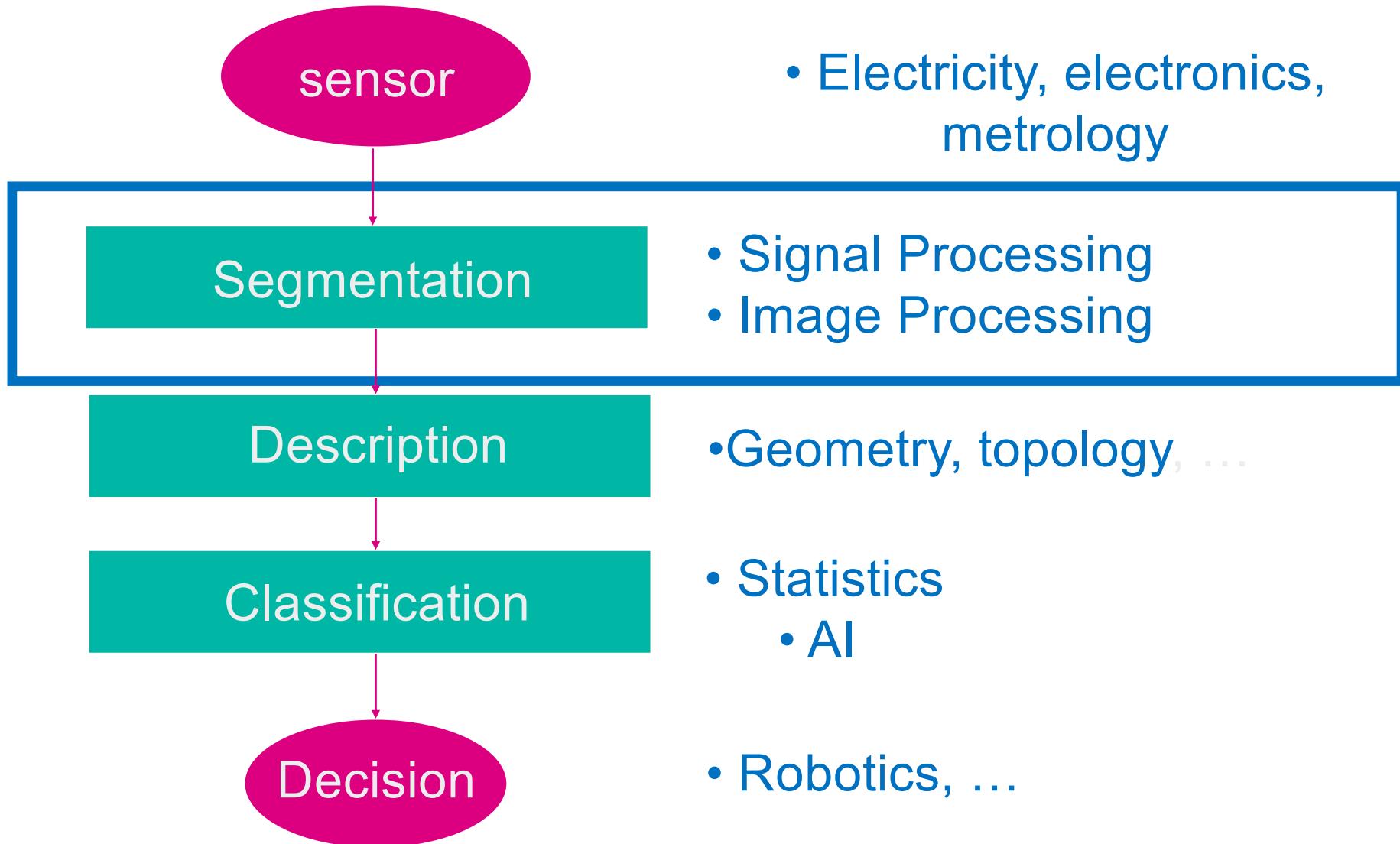
Lecture 1 : image pre-processing

Prof. Jean-Philippe THIRAN

JP.Thiran@epfl.ch

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

EPFL



- Chapter 1 : Image Segmentation

- Digital images, properties & consequences of those properties

- Pre-processing

- *Histogram Equalization*
 - *Denoising and image restoration*

- Segmentation:

- *Contour-based approach*
 - *Region-based approach*
 - *Mathematical Morphology*
 - *(Hough Transform)*

- Some examples

Lecture 1

Lecture 2

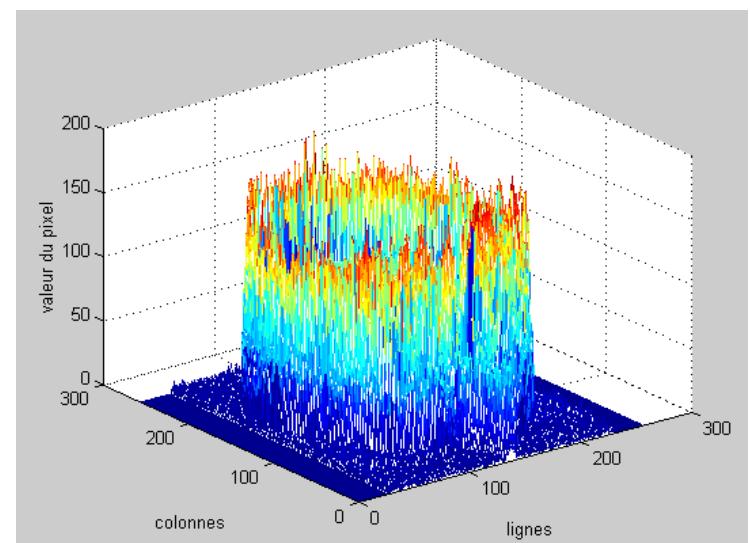
- An **image** is a function of (at least) 2 spatial variables :

$$f : \mathbb{R}^m \rightarrow \mathbb{R}^n, \vec{x} \mapsto \vec{y} = f(\vec{x})$$

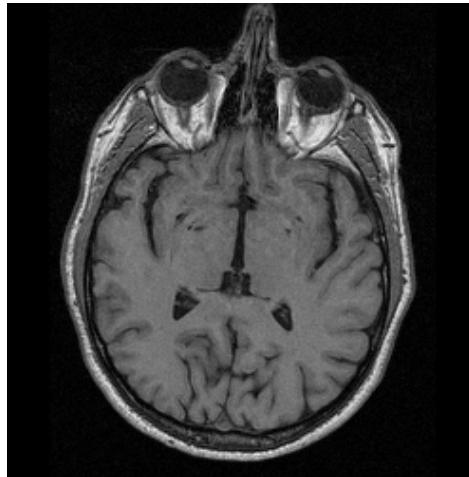
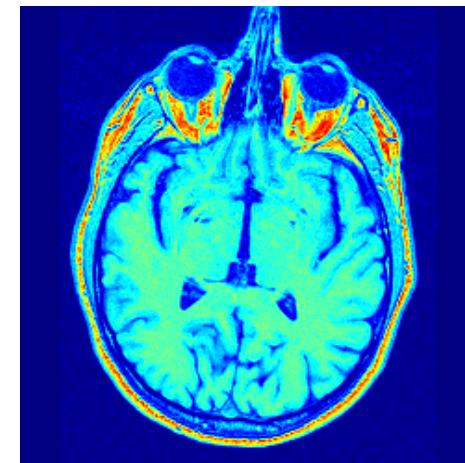
- 2D Images: $m = 2$, i.e. $\vec{x} = (x, y)$
- Monochromatic images: $n = 1$
- Digital images: discrete domain:

$$f : \mathbb{N}^m \rightarrow \mathbb{R}^n$$

- *The points are pixels (voxels in 3D)*



- Monochromatic images: 1 scalar / pixel
 - Often displayed as grey levels
 - Choice of other color lookup tables (CLUT) : « false colors »



Valeur	R	G	B
0	0/255	0/255	0/255
1	1/255	1/255	1/255
2	2/255	2/255	2/255
3	3/255	3/255	3/255
...
255	255/255	255/255	255/255

Valeur	R	G	B
0	0	0	0.5
1	0	0	0.052
...
150	1	0.34	0
...
255	0.5	0	0

- Multi-spectral images:

1 vector/pixel

- Example : color images

- *Each pixel has three color components, in a given color space*

- *Example : display on a screen: RGB*

- *Example : TV diffusion: YUV ou YIU (Y=luminance)*

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.331 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

- Luminance is a good component to identify objects

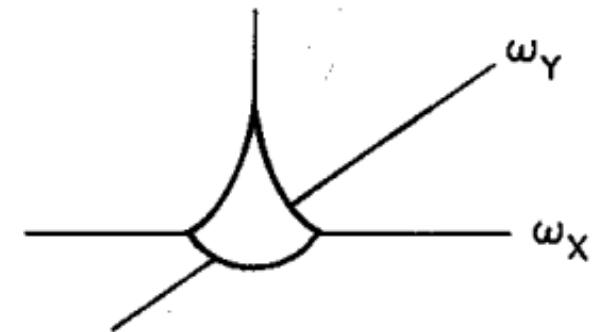
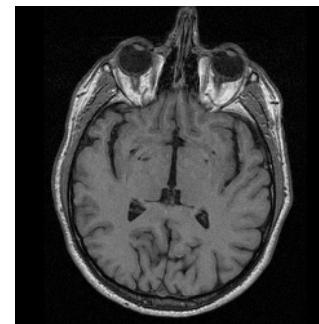
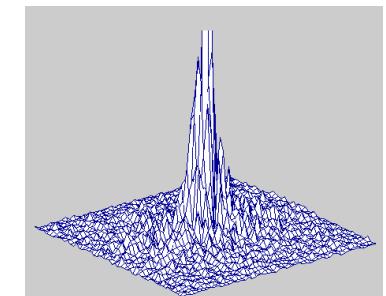
- Let $f(x,y)$ be a 2D image
 - Its Fourier Transform is

$$F(f_x, f_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(f_x x + f_y y)} dx dy$$

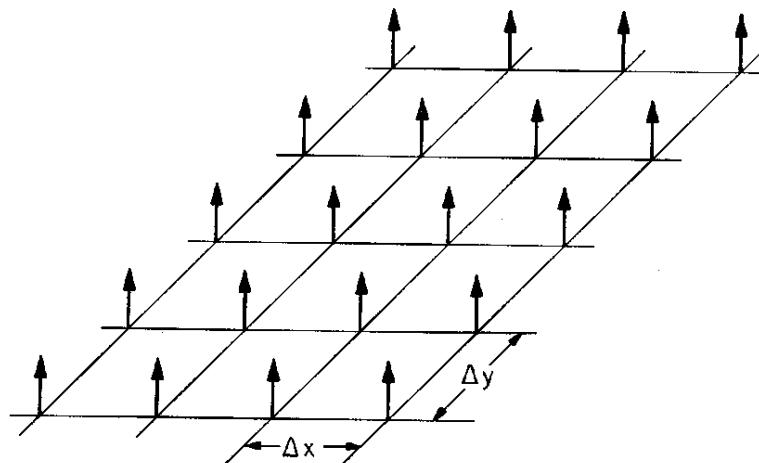
- It is separable :

$$F_y(f_x, y) = \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi f_x x} dx$$

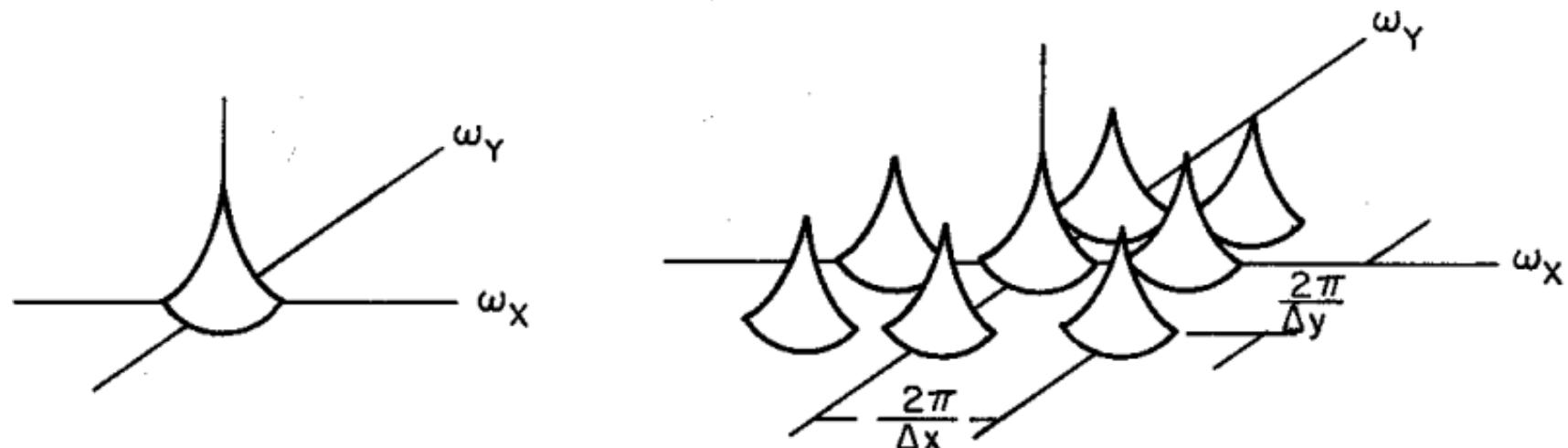
$$F(f_x, f_y) = \int_{-\infty}^{\infty} F_y(f_x, y) e^{-j2\pi f_y y} dy$$



- Sampling a continuous function (image) $f(x,y)$ means taking samples at every Δx and Δy
- f_{ex} and f_{ey} are the vertical and horizontal sampling frequencies, respectively
- Mathematically, this means multiplying the analog image $f(x,y)$ by a grid of Dirac impulses

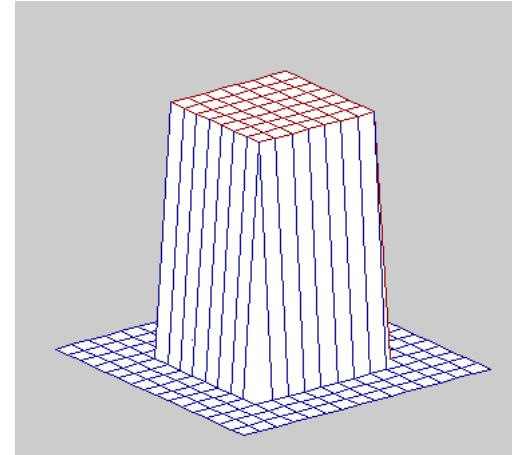
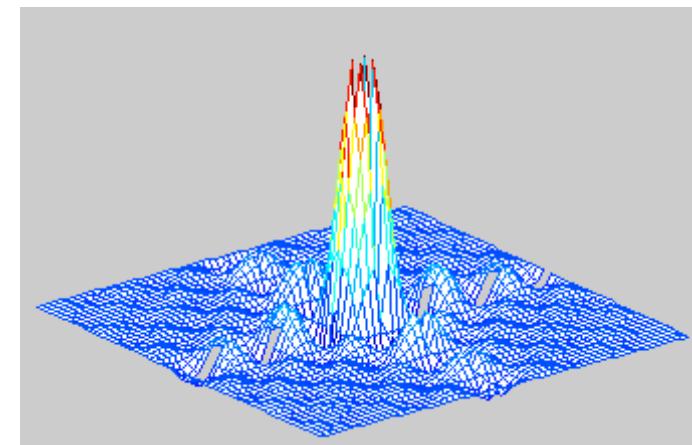


- Thus, the **spectrum** of the sampled image can be obtained by a convolution of the spectrum of the analog image with the FT of the grid of Dirac impulses:

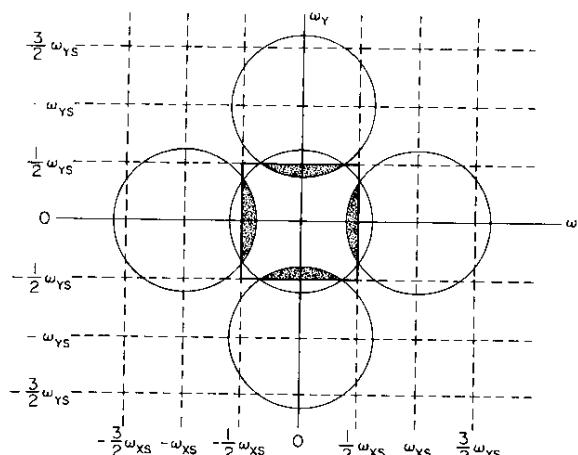


- From the spectrum of the sampled image, one can try to **reconstruct** the original image by low pass filtering:
 - Multiply the spectrum by a **rectangle function** in 2D
 - Convolve the sampled image by a signal of type $\sin(x)/x$ in 2D

$$R(x, y) = \frac{K \omega_{xL} \omega_{yL}}{\pi^2} \frac{\sin(\omega_{xL} x)}{\omega_{xL} x} \frac{\sin(\omega_{yL} y)}{\omega_{yL} y}$$



- Practical implication: **scale change** (« zoom »)
 - Up-sampling : interpolation by $R(x,y)$
 - Down-sampling: low-pass filtering + interpolation, otherwise aliasing



Aliasing

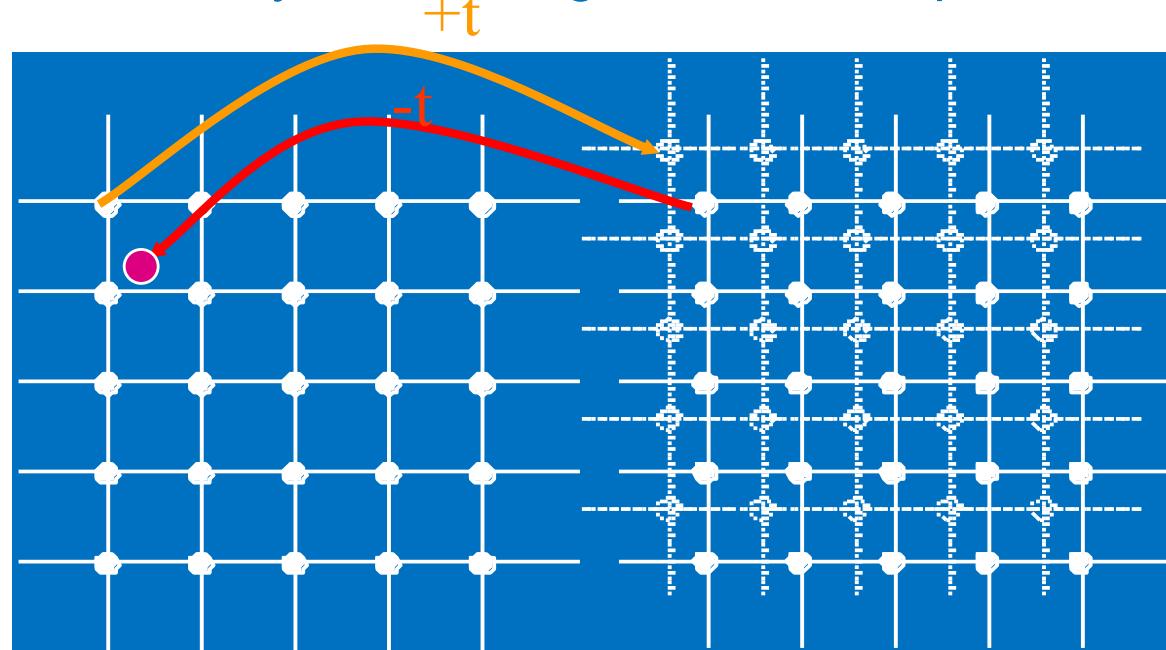
Originale Image

Aliasing

- Following the same considerations, it is possible to perform **geometrical operations** on images, as a pre-processing step:
 - translation : thanks to interpolation, it is possible to reconstruct an image translated by a non-integer number of pixels:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

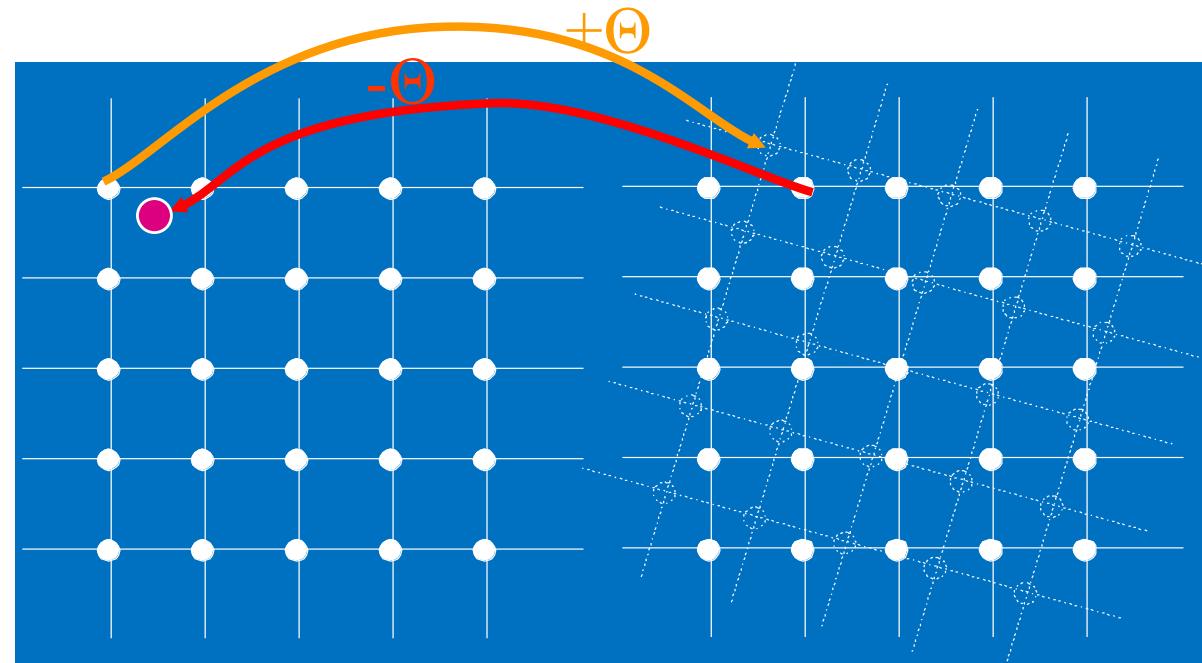


- Inverse translation + interpolation

- Other operations of the same type:
 - rotation : idem

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$



- rotation inverse + interpolation
- And similarly for all the possible geometrical transformations

- More generally:
 - Linear transformations :

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_0 \\ b_1 & b_2 & b_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Translation : $a_0 = -t_x, a_1 = 1, a_2 = 0, b_0 = -t_y, b_1 = 0, b_2 = 1$

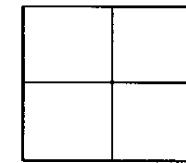
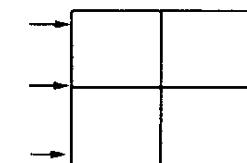
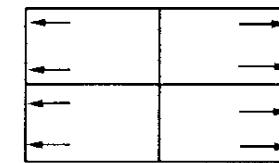
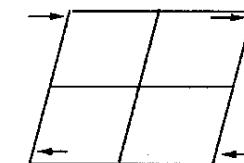
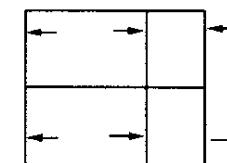
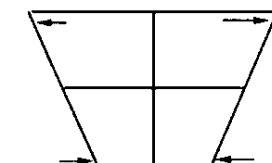
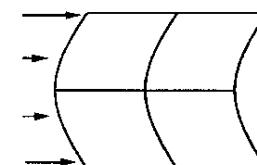
Rotation : $a_0 = 0, a_1 = \cos \theta, a_2 = \sin \theta, b_0 = 0, b_1 = -\sin \theta, b_2 = \cos \theta$

Zoom : $a_0 = 0, a_1 = 1/s, a_2 = 0, b_0 = 0, b_1 = 0, b_2 = 1/s$

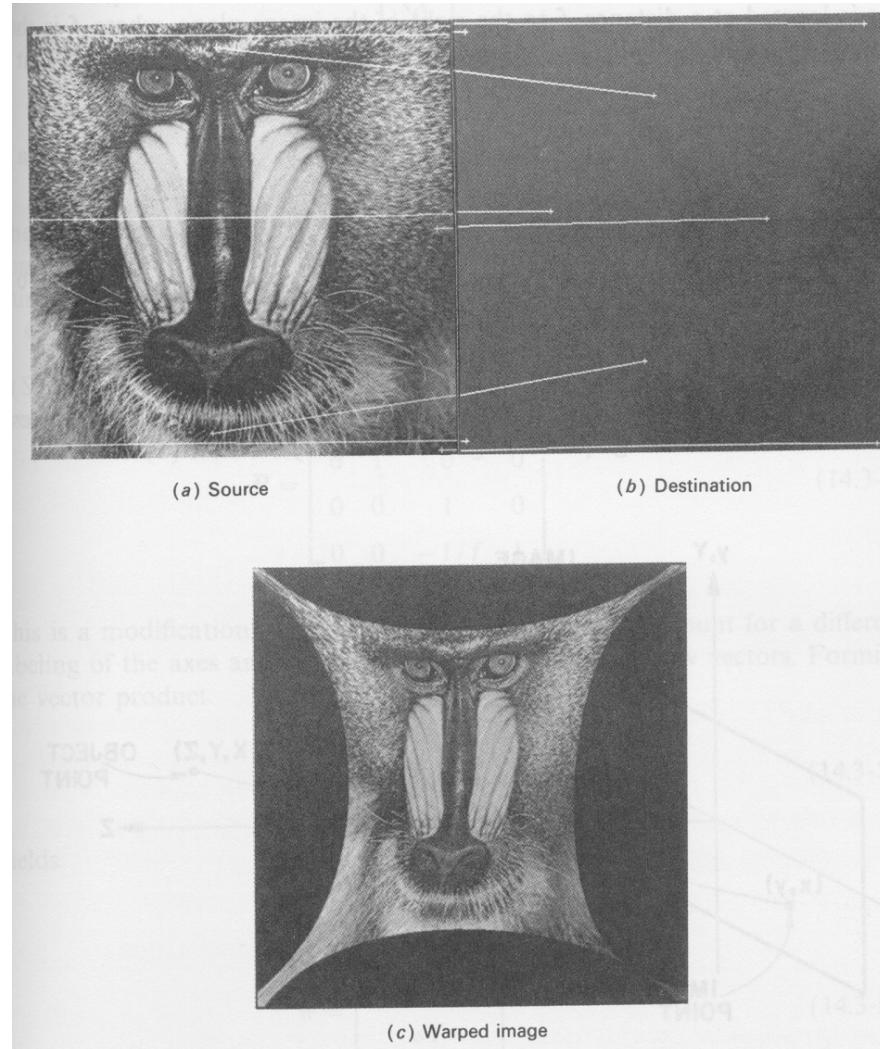
- Other geometrical transformations (non-linear):
 - Polynomial deformation
 - Ex: order 2

$$u = a_0 + a_1x + a_2y + a_3x^2 + a_4xy + a_5y^2$$

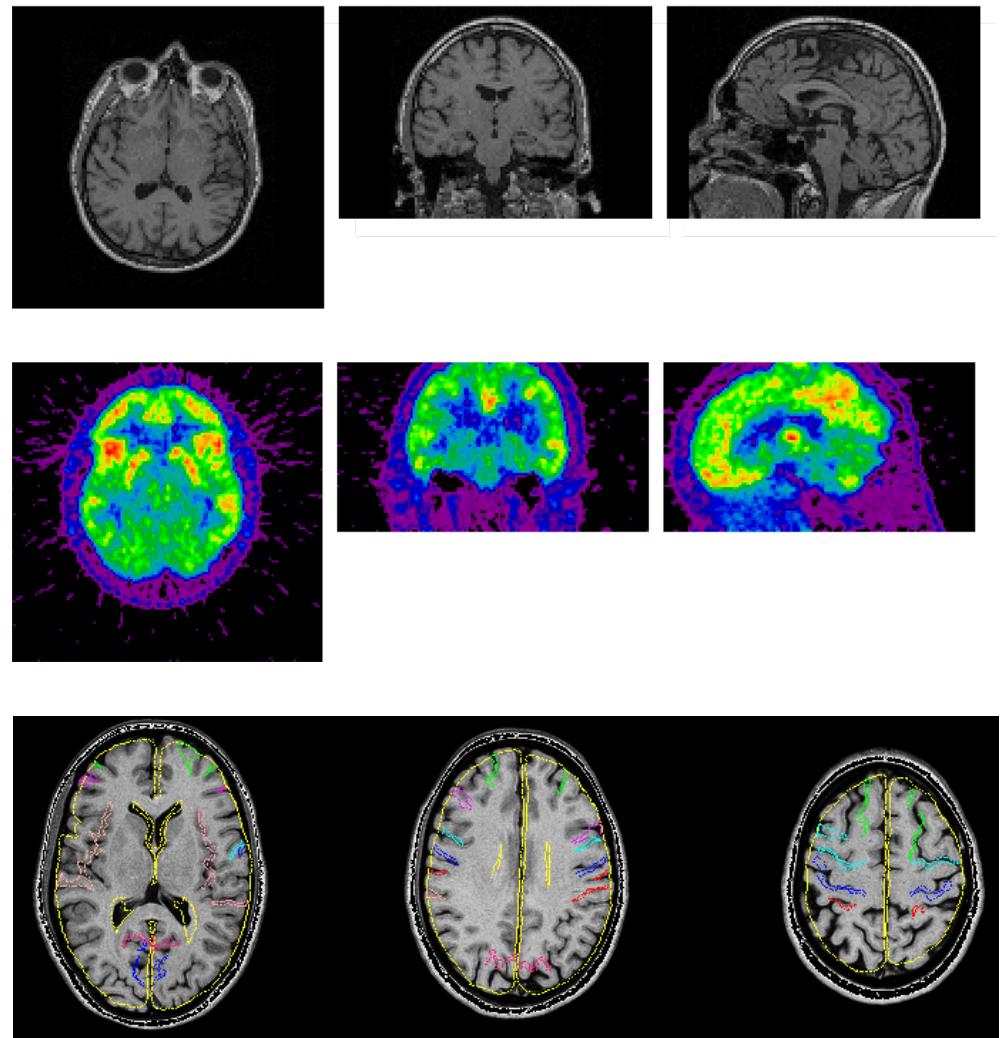
$$v = b_0 + b_1x + b_2y + b_3x^2 + b_4xy + b_5y^2$$



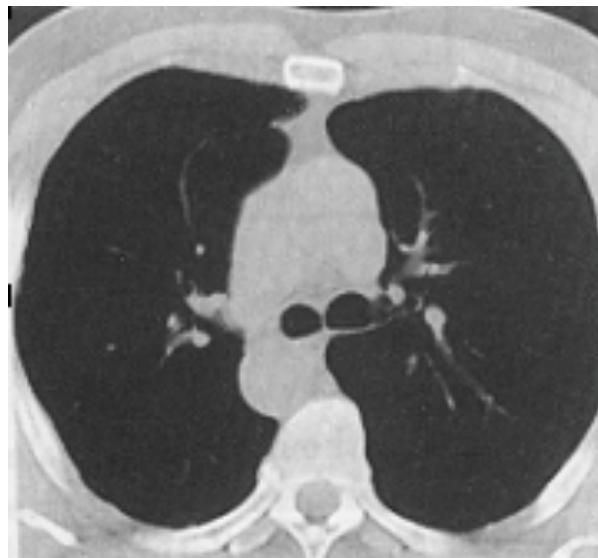
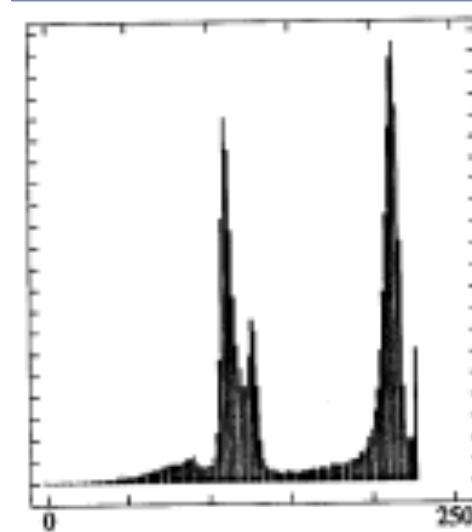
- Example of polynomial transformation



- Examples in medical imaging
 - compensation of the difference in position between two patients
 - *rotation-translation*
 - Registration in functional MRI
 - *rotation-translation*
 - Registration between different patients
 - *Complex non-rigid registration (polynomial)*

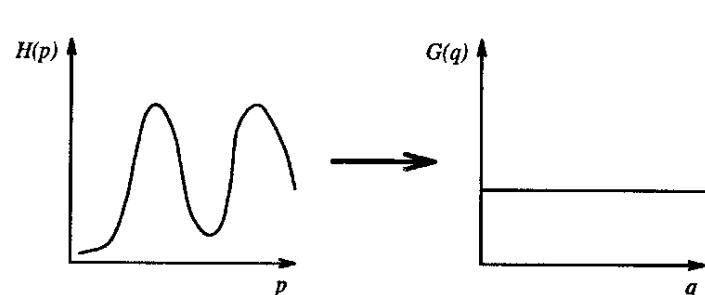


- Let us observe the histogram of the CT image



- Goal: create an image with a **uniform histogram**, by a transformation $q=T(p)$

$$\sum_i G(q_i) = \sum_i H(p_i) \text{ et } G(q_i) = \frac{N^2}{q_k - q_0}$$

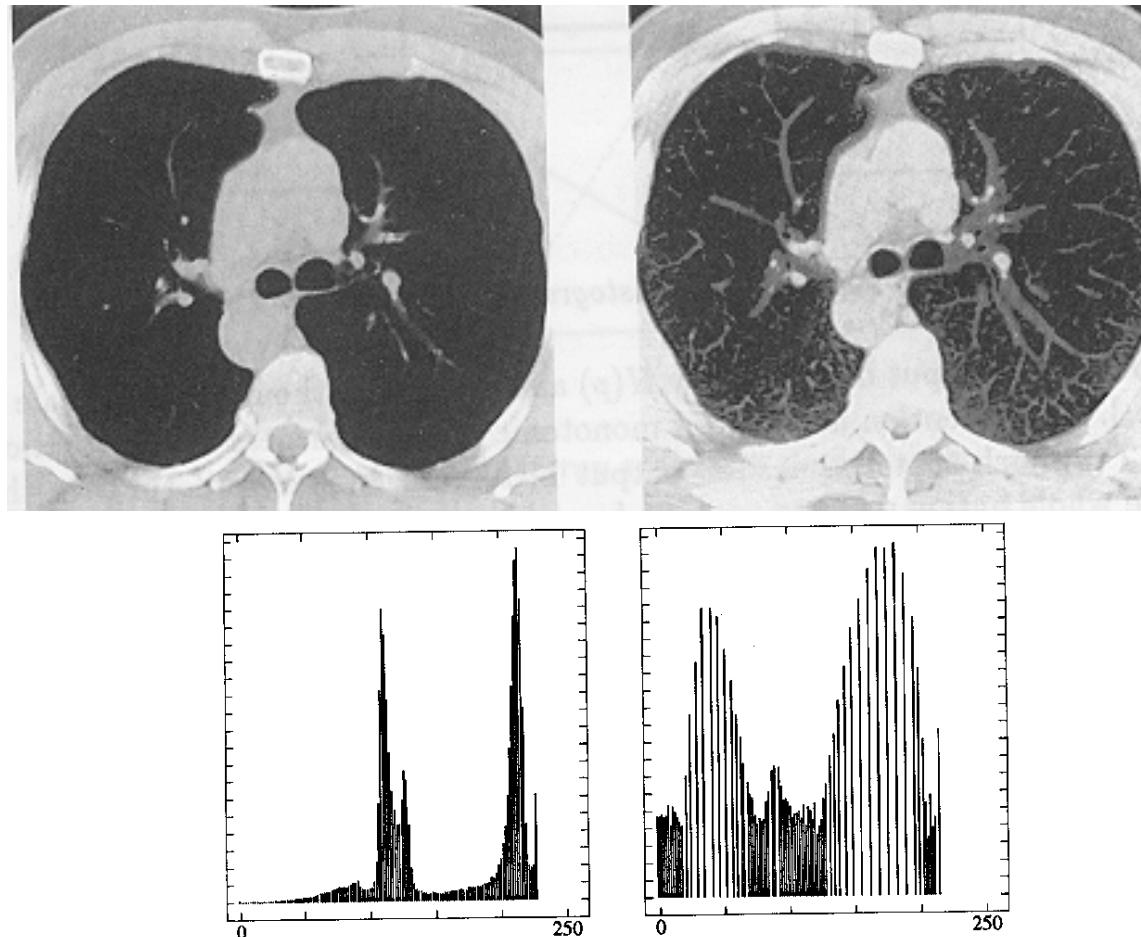


$$\int_{q_0}^q \frac{N^2}{q_k - q_0} ds = \frac{N^2}{q_k - q_0} (q - q_0) = \int_{p_0}^p H(s) ds$$

$$q = T(p) = \frac{q_k - q_0}{N^2} \int_{p_0}^p H(s) ds + q_0$$

$$q = T(p) = \frac{q_k - q_0}{N^2} \sum_{i=p_0}^p H(i) + q_0$$

- Example



- Vast topic!
- Source of **noise** in images:
 - All the interferences on the measurements (electrical, mechanical, ...)
 - Signal quantification
 - etc.
- Characteristics of the noise
 - **Random signal**
 - Often, in real situations, noise can be described as white, additive and Gaussian
 - But it may have sometimes other statistics (Reyleigh)
 - additive : $y(t) = x(t) + n(t)$

- One can define the importance of the noise by the **signal to noise ratio**:

$$SNR = 10 \log \frac{P_S}{P_N} \quad [\text{dB}]$$

- If one can acquire several realization of the noisy signal, one can try to denoise it by exploiting the statistical properties (e.g. zero mean) of the noise.
 - Example : for an additive noise with zero mean, one can calculate the mean of the observations, which will reduce the noise:

If $y(t) = x(t) + n(t)$

Then $E(y(t)) = E(x(t) + n(t)) = E(x(t)) + E(n(t)) = E(x(t))$

- If one has access to only one image: we have to use more general aspects:
 - Noise has a **large frequency spectrum**, containing also high frequencies (more than the images)
 - A **low-pass filtering** should reduce the noise
 - But there is a risk to alter the image as well!

- **Low-pass filtering:**

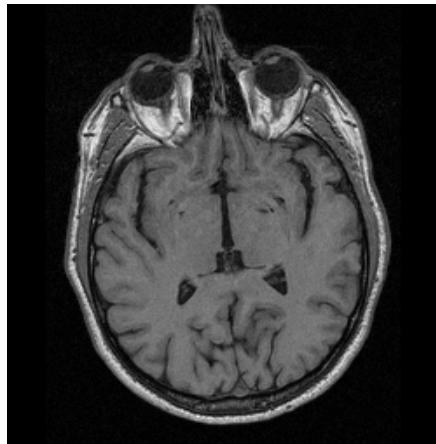
- 2D convolution:
$$G(i, j) = \sum_m \sum_n F(m, n) H(m - i, n - j)$$
- Some simple low-pass filters:

$$H = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$H = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

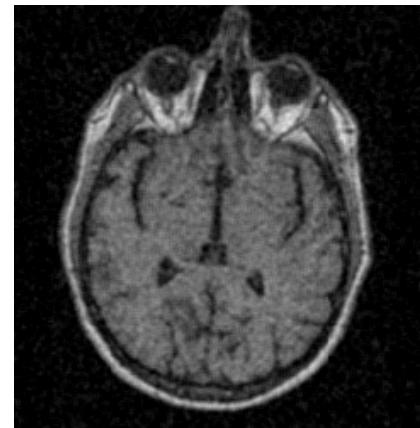
$$H = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- Example :

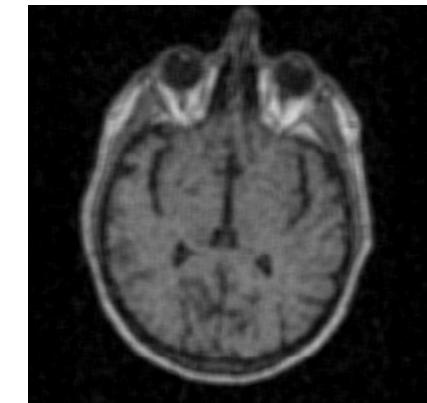


Original

With
additive
white
Gaussian
noise



Filtered
(3x3 filter)



Filtered
(5x5 filter)

- Sometimes the noise can be multiplicative
 - Noise depends on the intensity of the signal
 - example : nuclear medicine
- Then the model of the observed image is:
 - Initial image $f_i(i,j)$ multiplied by the noise $n(i,j)$

$$f_o(i, j) = f_i(i, j)n(i, j)$$

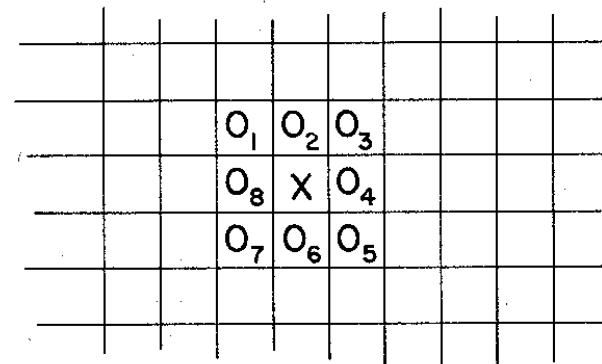
- By taking the logarithm, we can come back to an additive model, that we can filter

$$\log(f_o(i, j)) = \log(f_i(i, j)) + \log(n(i, j))$$

- **Linear filtering** works quite well for additive Gaussian noise
 - Even if it degrades the contours
- When the noise is of type “impulses”, we would need a very strong filter to suppress it, and the image would be very degraded
- **Non-linear techniques** often offer a good compromise between filtering power and respect of the image details

- Compare the pixel value with the mean of its neighbors
 - If the difference is greater than a certain threshold, the pixel is considered as noisy, and replaced by the mean of the neighbors
 - Can be seen as a conditional convolution by

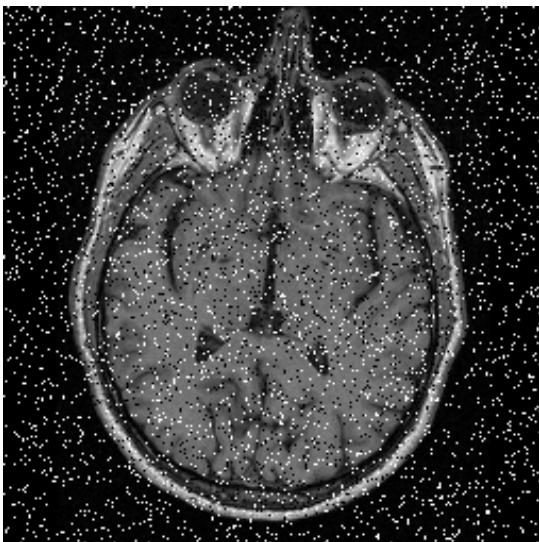
$$H = \frac{1}{8} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



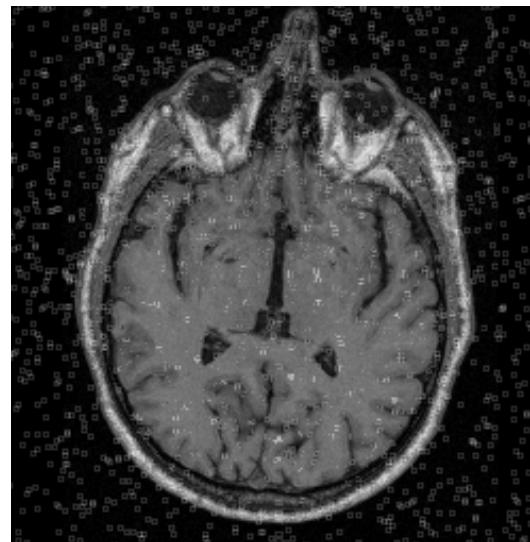
IF $|x - \frac{1}{8} \sum_{i=1}^8 O_i| > \epsilon$ THEN

$$x = \frac{1}{8} \sum_{i=1}^8 O_i$$

- Example

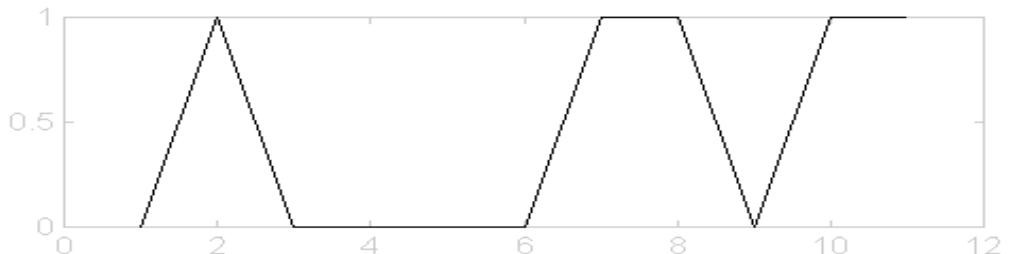
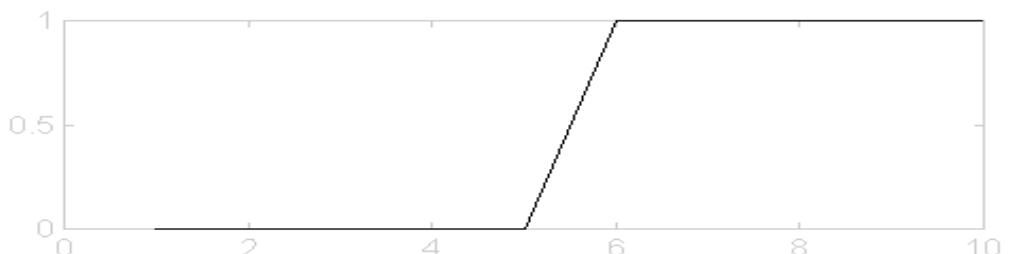


Noisy image
« salt & pepper »

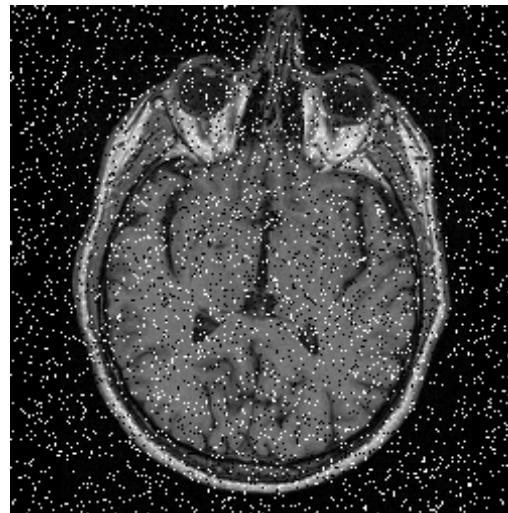
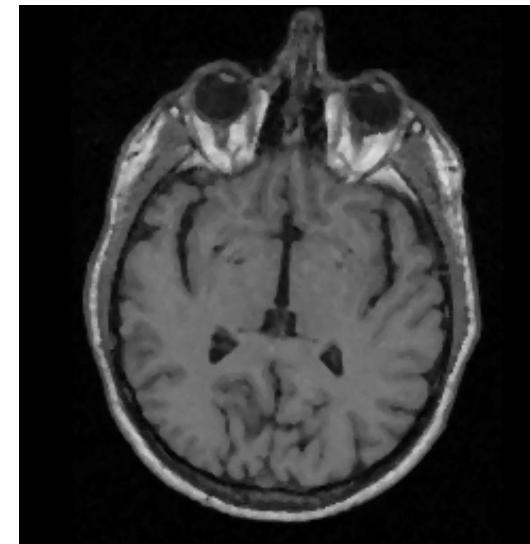


Denoised image

- Let us consider the neighbors of a pixel, on a neighborhood of size $n \times n$
- Let us **sort the values** of those pixels in ascending order
- Let us set the **median** value of this list (not the mean) as the value of the current pixel
 - The median is the value of the middle element of the list
- Advantages :**
 - Suppresses the small variations
 - Keeps the contours**

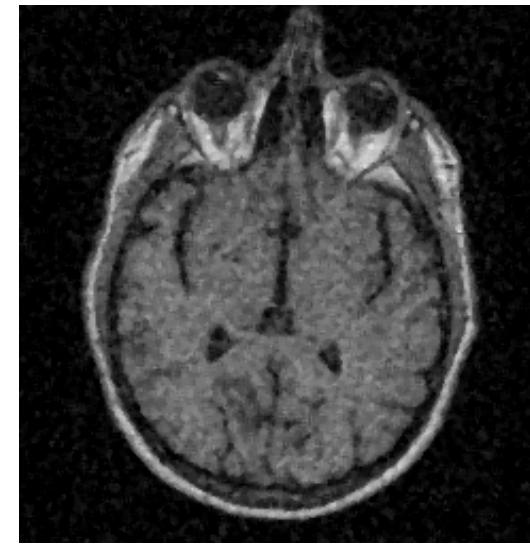


Noisy image
« salt & pepper »



Denoised image
« salt & pepper »

Noisy image
Gaussian noise

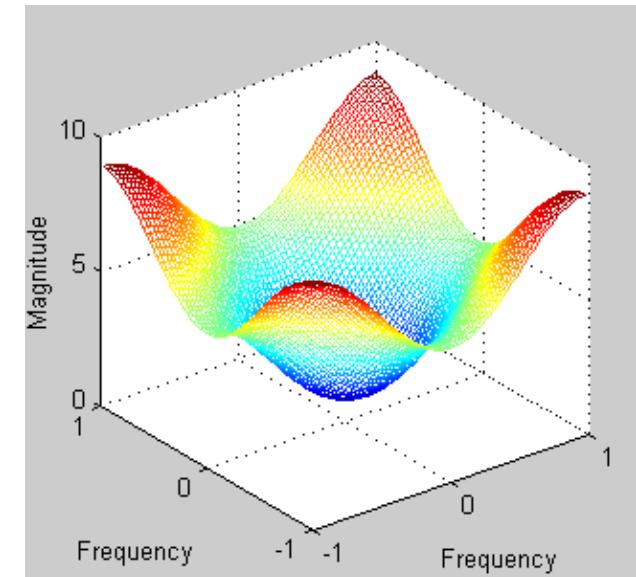


Denoised image
Gaussian noise

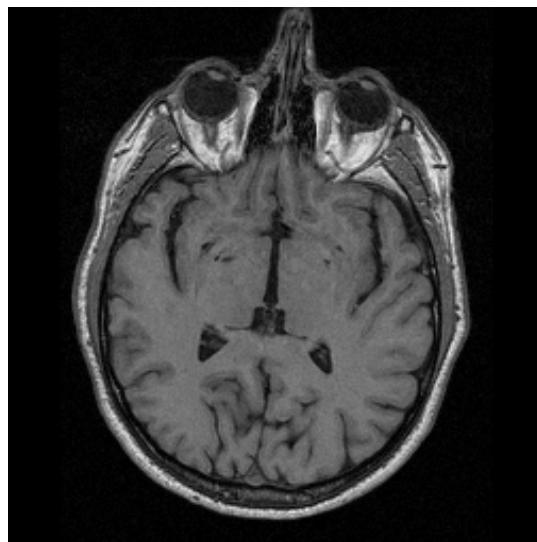
- General Principle:
 - Enhance the high frequencies
 - *Filtering by a high pass filter, added to the original image*
- Some examples of high pass filters:

$$H_1 = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad H_2 = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$H_3 = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$



- Example : MRI



Original



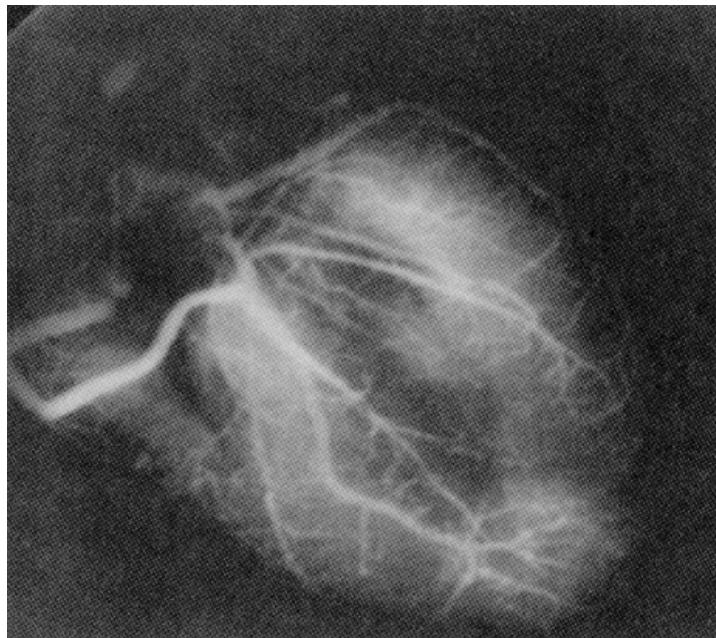
Enhanced : filter H_1

- Example : X ray

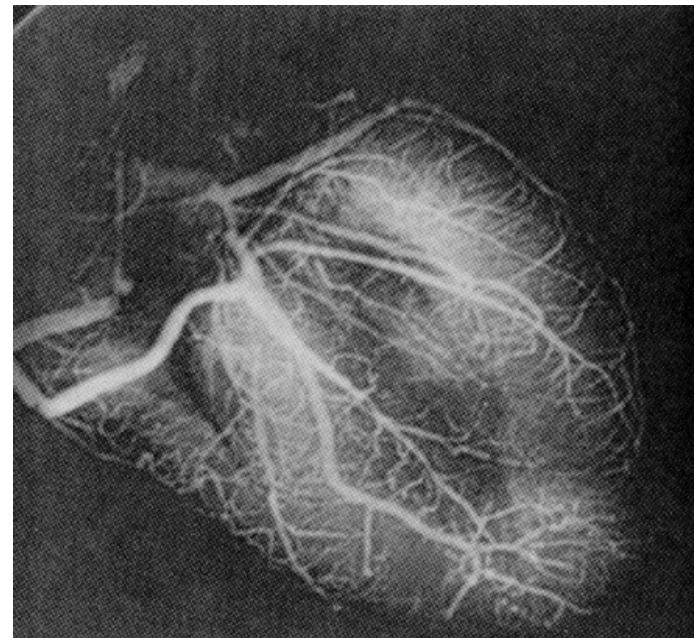
Original

Enhanced : filter H_1

- Example : DSA

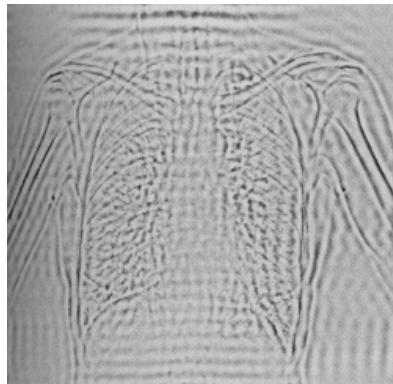


Original



Enhanced : filter H_1

- Contour Enhancement in the Fourier domain
 - Filtering by a high pass filter
 - Keep the original image and add the high pass component
 - **Warning:** do not use too strict filters, because of the ringing effect
 - Prefer a smooth filter like Butterworth



Too strict filter

Butterworth

- **Restoration** : invert non-wanted effects
- **Typical application:** **deconvolution**
 - Let us consider the ideal image f_i that has been degraded by an undesired (low pass) filtering effect
 - Let f_o be the observed image
 - Moreover, there is an additive noise n ,

$$f_o(x, y) = f_i(x, y) \ast \ast h_D(x, y) + n(x, y)$$

- **Goal** : try to **restore the initial image**, using a model for the original image and for the noise

- **Inverse filtering:** let us find a filter h_R that will best restore the image f_i
- The restored image will thus be

$$\hat{f}_i(x, y) = f_o(x, y) \ast \ast h_R(x, y)$$

- By substitution in the previous equation, we get

$$\hat{f}_i(x, y) = [f_i(x, y) \ast \ast h_D(x, y) + n(x, y)] \ast \ast h_R(x, y)$$

- By FT:

$$\hat{F}_i(\omega_x, \omega_y) = [F_i(\omega_x, \omega_y)H_D(\omega_x, \omega_y) + N(\omega_x, \omega_y)]H_R(\omega_x, \omega_y)$$

- Thus,, the solution consists in taking a filter h_R with a frequency response inverse of that of h_D :

$$H_R(\omega_x, \omega_y) = \frac{1}{H_D(\omega_x, \omega_y)}$$

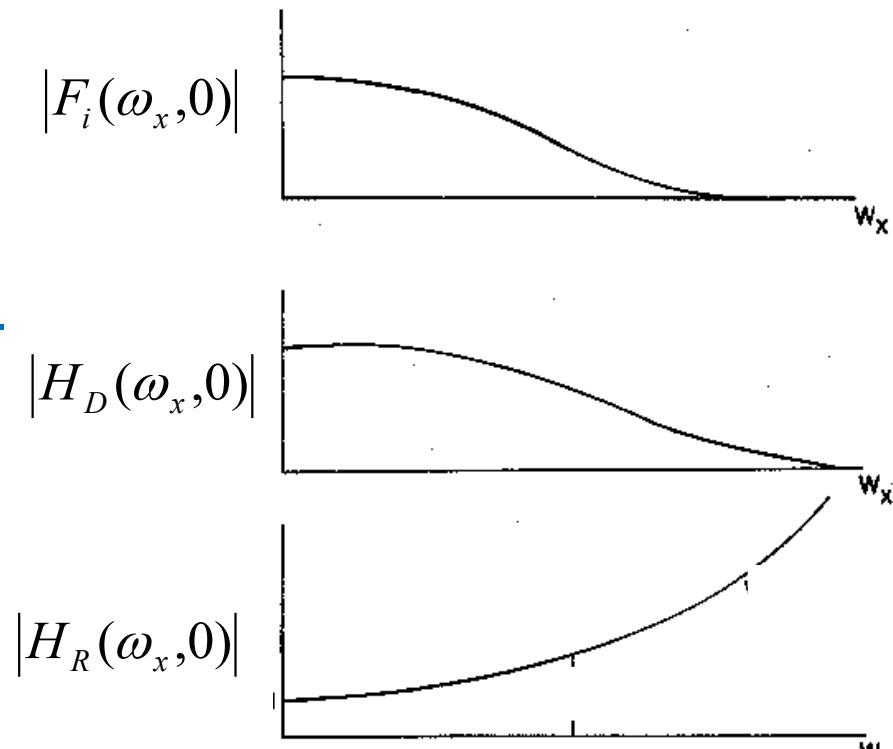
- The spectrum of the restored image is thus

$$\hat{F}_i(\omega_x, \omega_y) = F_i(\omega_x, \omega_y) + \frac{N(\omega_x, \omega_y)}{H_D(\omega_x, \omega_y)}$$

- And by inverse FT, the restored image will be

$$\hat{f}_i(x, y) = f_i(x, y) + \frac{1}{4\pi^2} \iint_{-\infty}^{\infty} \frac{N(\omega_x, \omega_y)}{H_D(\omega_x, \omega_y)} e^{j(\omega_x x + \omega_y y)} dx dy$$

- Without noise, the restoration is perfect
- With noise, the error can be important:
 - Often h_D will be a low-pass filter (blur, ...)
 - Noise will thus be amplified



- Example

Original

Blured image
(filtered)

Noisy and blurred

- Example (cont.)

Restoration of the blurred image

Restoration of the noisy blurred image

- The previous problem comes from the fact that the filter ignores the presence of noise in the
 - solution : **Wiener filtering**, that considers both a model of the image and of the noise
- **Wiener filtering**: hypotheses :
 - Images are 2D random variables, with zero mean (can be obtained by subtracting the mean to the images)
- Goal: find a filter h_R that will minimize the quadratic error

$$\varepsilon = E \left\{ \left[f_i(x, y) - \hat{f}_i(x, y) \right]^2 \right\}$$

- Calculating the 1st derivative, the error is minimal when

$$E\left\{ \left[f_i(x, y) - \hat{f}_i(x, y) \right] f_o(x', y') \right\} = 0$$

- By replacing \hat{f}_i by its value, we get

$$E\left\{ f_i(x, y) f_o(x', y') \right\} = \int_{-\infty}^{\infty} \int E\left\{ f_o(i, j) f_o(x', y') \right\} h_R(x - i, y - j) di dj$$

- The expectations of this products are the intercorrelation and the autocorrelation of the variables:

$$K_{f_i f_o}(x - x', y - y') = \int_{-\infty}^{\infty} \int K_{f_o}(i - x', j - y') h_R(x - i, y - j) di dj$$

$$K_{f_i f_o}(x - x', y - y') = \int_{-\infty}^{\infty} \int K_{f_o}(i - x', j - y') h_R(x - i, y - j) di dj$$

- By FT, we obtain

$$H_R(\omega_x, \omega_y) = \frac{P_{f_i f_o}(\omega_x, \omega_y)}{P_{f_o}(\omega_x, \omega_y)}$$

$P_{f_i f_o}(\omega_x, \omega_y)$ is the power interspectrum

$P_{f_o}(\omega_x, \omega_y)$ is the power spectrum of f_o

- When the noise is additive, we can write, by the Wiener-Kintchine theorems :

$$P_{f_o}(\omega_x, \omega_y) = |H_D(\omega_x, \omega_y)|^2 P_{f_i}(\omega_x, \omega_y) + P_N(\omega_x, \omega_y)$$

and

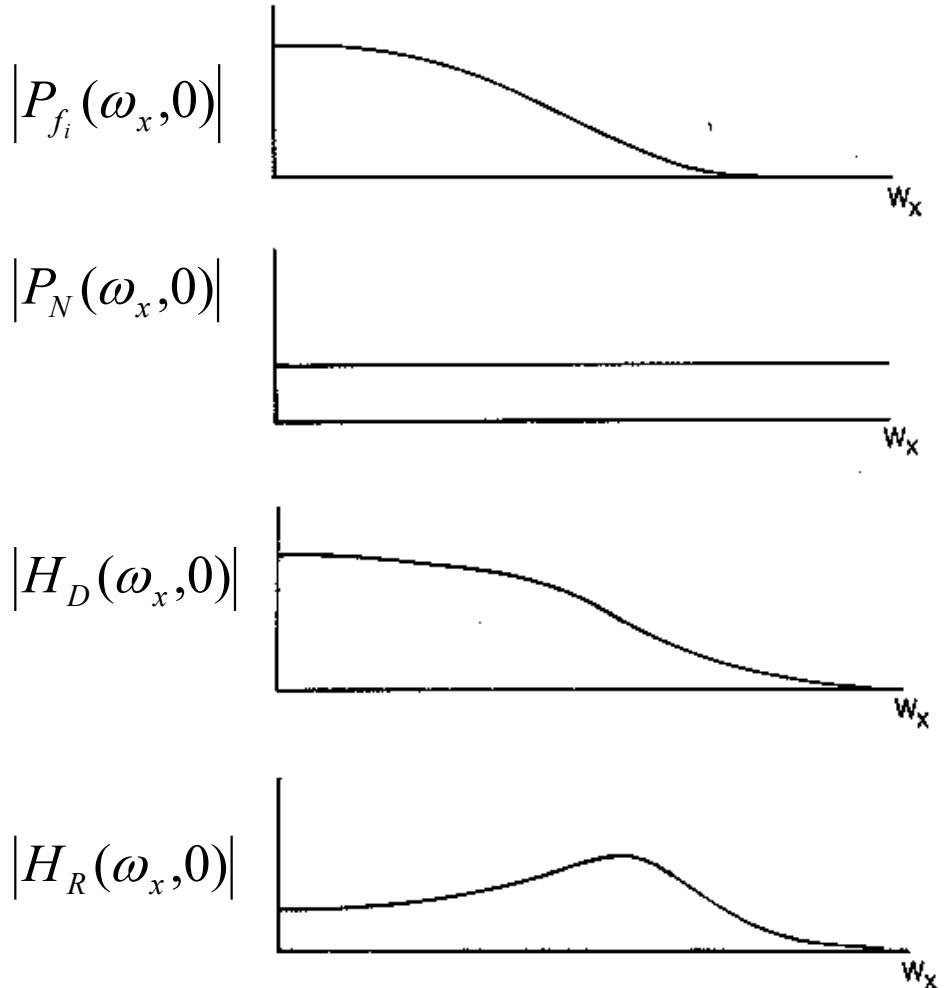
$$P_{f_o f_i}(\omega_x, \omega_y) = H_D^*(\omega_x, \omega_y) P_{f_i}(\omega_x, \omega_y)$$

- And we finally obtain the **Wiener filter**, with frequency response:

$$H_R(\omega_x, \omega_y) = \frac{H_D^*(\omega_x, \omega_y)}{|H_D^*(\omega_x, \omega_y)|^2 + \frac{P_N(\omega_x, \omega_y)}{P_{f_i}(\omega_x, \omega_y)}}$$

- Conclusions :

- The Wiener filter is a adaptive band-pass filter
- It behaves like the inverse filter at low frequencies and like a low-pass filter for high frequencies



- Examples :

Motion blur

Restored Image

- Examples (cont.):

Out-of-focus blur

Restored image

- How to estimate h_D and the power spectrum of the noise?
 - h_D is the impulse response of the system. Thus if we find in the image a place that should contain a punctual object, one can deduce h_D
 - Similarly, a clear edge allows to evaluate the index response, integral of the impulse response
- For the power spectrum of the noise:
 - A uniform region in the image show the noise. The FT of its autorcorrelation gives an estimation of the power spectrum of the noise

