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The Pattern Recognition System

Segmentation

sensor

Description

Classification

Decision

• Electricity, electronics, 
metrology

• Signal Processing
• Image Processing

•Geometry, topology, …

• Statistics
• AI 

• Robotics, …
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Image segmentation

• Chapter 1 : Image Segmentation
– Digital images, properties & consequences 
of those properties
– Pre-processing

§ Histogram Equalization
§ Denoising and image restoration

– Segmentation:
§ Contour-based approach
§ Region-based approach
§ Mathematical Morphology
§ (Hough Transform)

– Some examples

Lecture 1

Lecture 2
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Digital images & properties

• An image is a function of (at 
least) 2 spatial variables : 

– 2D Images:

– Monochromatic images: n=1
– Digital images: discrete domain:

§ The points are pixels (voxels in 
3D)
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Digital images & properties

• Monochromatic images: 1 scalar  / pixel
– Often displayed as grey levels
– Choice of other color lookup tables (CLUT) : « false colors »
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Digital images & properties

• Multi-spectral images: 
1 vector/pixel
– Example : color images

§ Each pixel has three color 
components, in a given color 
space

§ Example : display on a screen: 
RGB

§ Example : TV diffusion: YUV 
ou YIU (Y=luminance)

– Luminance is a good 
component to identify objects
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2D Fourier Transform

• Let f(x,y) be a 2D image
– Its Fourier Transform is

– It is separable : 
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Sampling and reconstruction

• Sampling a continuous function (image) f(x,y) means 
taking samples at every Δx and Δy

• fex and fey are the vertical and horizontal sampling 
frequencies, respectively

• Mathematically, this means multiplying the analog 
image f(x,y) by a grid of Dirac impulses
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Sampling and reconstruction

• Thus, the spectrum of the sampled image can 
be obtained by a convolution of the spectrum 
of the analog image with the FT of the grid of 
Dirac impulses:  

Spectrum of the 
analog image Spectrum od the sampled image
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Image reconstruction

• From the spectrum of the 
sampled image, on can try 
to reconstruct the original 
image by low pass filtering:

– Multiply the spectrum by a 
rectangle function in 2D

– Convolve the sampled 
image by a signal of type 
sin(x)/x in 2D
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Scale change

• Practical implication: scale change (« zoom »)
– Up-sampling : interpolation by R(x,y)
– Down-sampling: low-pass filtering + interpolation, 

otherwise aliasing

Aliasing Originale Image Aliasing
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Geometrical operations

• Following the same considerations, it is possible to 
perform geometrical operations on images, as a pre-
processing step:

– translation : thanks to interpolation, it is possible to reconstruct 
an image translated by a non-integer number of pixels:

– Inverse translation + interpolation
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Geometrical operations

• Other operations of the same type: 
– rotation : idem

§ rotation inverse + interpolation
– And similarly for all the possible geometrical 

transformations
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Geometrical operations

• More generally: 
– Linear transformations : 
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Geometrical operations

• Other geometrical 
transformations (non-linear):
– Polynomial deformation

§ Ex: order 2
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Geometrical operations

• Example of 
polynomial  
transformation
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Geometrical operations

• Examples in medical 
imaging

– compensation  of the 
difference in position 
between two patients
§ rotation-translation

– Registration in 
functional MRI
§ rotation-translation

– Registration between 
different patients
§ Complex non-rigid 

registration 
(polynomial)

IRM

TEP
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Histogram Equalization

• Let us observe the histogram of the CT 
image
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Histogram Equalization

• Goal: create an image with a uniform 
histogram, by a transformation q=T(p)
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Histogram Equalization

• Example
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Denoising

• Vast topic!
• Source of noise in images: 

– All the interferences on the measurements 
(electrical, mechanical, …)

– Signal quantification
– etc.

• Characteristics of the noise
– Random signal
– Often, in real situations, noise can be described as 

white, additive and Gaussian
– But it may have sometimes other statistics 

(Reyleigh)
– additive : y(t) = x(t)+n(t)
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Denoising

• One can define the importance of the noise by the 
signal to noise ratio:

• If one can acquire several realization of the noisy 
signal, one can try to denoise it by exploiting the 
statistical properties (e.g. zero mean) of the noise.
– Example : for an additive noise with zero mean, one can 

calculate the mean of the observations, which will reduce the 
noise: 

[dB]          log10
N

S

P
PSNR =

� 

If y(t) =  x(t) +  n(t)

Then E y(t)( ) = E x(t) + n(t)( ) = E x(t)( ) + E n(t)( ) = E x(t)( )
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Denoising: linear filtering

• If one has access to only one image: we have to use 
more general aspects: 
– Noise has a large frequency spectrum, containing also high 

frequencies (more than the images)
– A low-pass filtering should reduce the noise
– But there is a risk to alter the image as well!

• Low-pass filtering: 
– 2D convolution: 

– Some simple low-pass filters:
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Denoising: linear filtering

• Example : 

Original With 
additive 
white 
Gaussian 
noise

Filtered
(3x3 filter)

Filtered
(5x5 filter)
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Denoising: homomorphic filtering

• Sometimes the noise can be multiplicative
– Noise depends on the intensity of the signal
– example : nuclear medicine

• Then the model of the observed image is: 
– Initial image fi(i,j) multiplied by the noise n(i,j)

– By taking the logarithm, we can come back to an additive 
model, that we can filter

),(),(),( jinjifjif io =

)),(log()),(log()),(log( jinjifjif io +=
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Denoising: non-linear filtering

• Linear filtering works quite well for additive 
Gaussian noise
– Even if it degrades the contours

• When the noise is of type “impulses”, we would 
need a very strong filter to suppress it, and the 
image would be very degraded

• Non-linear techniques often offer a good 
compromise between filtering power and 
respect of the image details
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Denoising : « Outliers »

• Compare the pixel 
value with the mean 
of its neighbors
– If the difference is greater 

than a certain threshold, 
the pixel is considered as 
noisy, and replaced by the 
mean of the neighbors

– Can be seen as a 
conditional convolution by
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Denoising : « Outliers »

• Example

Noisy image
« salt & pepper »

Denoised image
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Denoising: median filter

• Let us consider the neighbors 
of a pixel, on a neighborhood 
of size nxn

• Let us sort the values of those 
pixels in ascending order

• Let us set the median value of 
this list (not the mean) as the 
value of the current pixel 

– The median is the value of 
the middle element of the list

• Advantages : 
– Suppresses the small 

variations
– Keeps the contours
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Denoising: median filter

Noisy image
« salt & pepper » Denoised image

« salt & pepper »

Denoised image
Gaussian noise

Noisy image
Gaussian noise
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Contour enhancement

• General Principle: 
– Enhance the high frequencies

§ Filtering by a high pass filter, added to the original image

• Some examples of high pass filters:
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Contour enhancement

• Example : MRI

Original Enhanced : filter H1
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Contour enhancement

• Example : X ray

Original Enhanced : filter H1
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Contour enhancement

• Example : DSA

Original Enhanced : filter H1
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Contour enhancement

• Contour Enhancement in the Fourier domain
– Filtering by a high pass filter
– Keep the original image and add the high pass component
– Warning: do not use too strict filters, because of the ringing 

effect
– Prefer a smooth filter like Butterworth

Too strict filter Butterworth
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Image Restoration

• Restoration : invert non-wanted effects
• Typical application: deconvolution

– Let us consider the ideal image fi that has been 
degraded by an undesired (low pass) filtering effect

– Let fo be the observed image
– Moreover, there is an additive noise n, 

• Goal : try to restore the initial image, using a model for 
the original image and for the noise

),(),(**),(),( yxnyxhyxfyxf Dio +=



37

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Image restoration: inverse filtering

• Inverse filtering: let us find a filter hR that will best 
restore the image fi 

• The restored image will thus be

• By substitution in the previous equation, we get

• By FT:

),(**),(),(ˆ yxhyxfyxf Roi =
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Image restoration: inverse filtering

• Thus,, the solution consists in taking a filter hR with a 
frequency response inverse of that of hD :

• The spectrum of the restored image is thus

• And by inverse FT, the restored image will be 
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Image restoration: inverse filtering

• Without noise, the 
restoration is perfect

• With noise, the error 
can be important:
– Often hD will be a low-

pass filter (blur, …)
– Noise will thus be 

amplified

)0,( xiF w
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Image restoration: inverse filtering

• Example

Original Blured image
(filtered)

Noisy and blured
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Image restoration: inverse filtering

• Example (cont.)

Restoration of the blured image Restoration of the noisy blured image
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Image restoration: Wiener filtering

• The previous problem comes from the fact that the filter 
ignores the presence of noise in the
– solution : Wiener filtering, that considers both a model of the 

image and of the noise
• Wiener filtering: hypotheses : 

– Images are 2D random variables, with zero mean (can be 
obtained by subtracting the mean to the images) 

• Goal: find a filter hR that will minimize the quadratic 
error
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Image restoration: Wiener filtering

• Calculating the 1st derivative, the error is minimal 
when

• By replacing        by its value, we get

• The expectations of this products are the 
intercorrelation and the autocorrelation of the variables: 
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Image restoration: Wiener filtering

• By FT, we obtain
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Image restoration: Wiener filtering

• When the noise is additive, we can write, by the Wiener-Kintchine 
theorems :

• And we finally obtain the Wiener filter, with frequency response:
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Image restoration: Wiener filtering

• Conclusions :
– The Wiener filter is a 

adaptive band-pass 
filter

– It behaves like the 
inverse filter at low 
frequencies and like a 
low-pass filter for high 
frequencies
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Image restoration: Wiener filtering

• Examples : 

Motion blur Restored Image
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Image restoration: Wiener filtering

• Examples (cont.): 

Out-of-focus blur Restored image



49

Signal Processing Laboratory (LTS5)
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Image restoration: Wiener filtering

• How to estimate hD and the 
power spectrum of the noise?
– hD is the impulse response of the 

system. Thus if we find in the 
image a place that should contain 
a punctual object, one can deduce 
hD

– Similarly, a clear edge allows to 
evaluate the index response, 
integral of the impulse response

• For the power spectrum of the 
noise:
– A uniform region in the image 

show the noise. The FT of its 
autorcorrelation gives an 
estimation of the power spectrum 
of the noise


